Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Проектная документация и системы стандартов




Единая система программной документации (ЕСПД) — комплекс государственных стандартовРоссийской Федерации, устанавливающих взаимосвязанные правила разработки, оформления и обращения программ и программной документации. В стандартах ЕСПД устанавливают требования, регламентирующие разработку, сопровождение, изготовление и эксплуатацию программ, что обеспечивает возможность:

· унификации программных изделий для взаимного обмена программами и применения ранее разработанных программ в новых разработках;

· снижения трудоемкости и повышения эффективности разработки, сопровождения, изготовления и эксплуатации программных изделий;

· автоматизации изготовления и хранения программной документации.

Сопровождение программы включает анализ функционирования, развитие и совершенствование программы, а также внесение изменений в нее с целью устранения ошибок.

Поскольку ЕСПД представляет собой набор ГОСТов, в настоящее время её применение на территории РФ носит только рекомендательный характер, то есть ЕСПД применяется на добровольной основе (если иное не предусмотрено договором, контрактом, отдельными законами, решением суда и т.п.)

Еди́ная систе́ма констру́кторской документа́ции (ЕСКД)[1] — комплекс государственных стандартов, устанавливающих взаимосвязанные правила, требования и нормы по разработке, оформлению и обращению конструкторской документации[2], разрабатываемой и применяемой на всех стадиях жизненного цикла изделия (при проектировании, разработке, изготовлении, контроле, приёмке, эксплуатации, ремонте, утилизации).

Основное назначение стандартов ЕСКД состоит в установлении единых оптимальных правил, требований и норм выполнения, оформления и обращения конструкторской документации, которые обеспечивают[1]:

1. применение современных методов и средств на всех стадиях жизненного цикла изделия;

2. возможность взаимообмена конструкторской документацией без её переоформления;

3. оптимальную комплектность конструкторской документации;

4. механизацию и автоматизацию обработки конструкторских документов и содержащейся в них информации;

5. высокое качество изделий;

6. наличие в конструкторской документации требований, обеспечивающих безопасность использования изделий для жизни и здоровья потребителей, окружающей среды, а также предотвращение причинения вреда имуществу;

7. возможность расширения унификации и стандартизации при проектировании изделий и разработке конструкторской документации;

8. возможность проведения сертификации изделий;

9. сокращение сроков и снижение трудоёмкости подготовки производства;

10. правильную эксплуатацию изделий;

11. оперативную подготовку документации для быстрой переналадки действующего производства;

12. упрощение форм конструкторских документов и графических изображений;

13. возможность создания и ведения единой информационной базы;

14. возможность гармонизации стандартов ЕСКД с международными стандартами (ИСО, МЭК) в области конструкторской документации;

15. возможность информационного обеспечения поддержки жизненного цикла изделия.

Стандарты ЕСКД распространяются на изделия машиностроения и приборостроения. Область распространения отдельных стандартов расширена, что оговорено во введении к ним. Поскольку ЕСКД представляет собой наборГОСТов, в настоящее время её применение на территории РФ носит только рекомендательный характер, то есть ЕСКД применяется на добровольной основе (если иное не предусмотрено договором, контрактом, отдельными законами, решением суда и т.п.)

Руководство пользователя (англ. user guide или user manual), руководство по эксплуатации, руководство оператора — документ, назначение которого — предоставить людям помощь в использовании некоторой системы. Документ входит в состав технической документации на систему и, как правило, подготавливается техническим писателем.

1. Большинство руководств пользователя помимо текстовых описаний содержит изображения. В случае программного обеспечения, в руководство обычно включаются снимки экрана, при описании аппаратуры — простые и понятные рисунки или фотографии. Используется стиль и язык, доступный предполагаемой аудитории, использованиежаргона сокращается до минимума либо подробно объясняется. Типичное руководство пользователя содержит:

2. Аннотацию, в которой приводится краткое изложение содержимого документа и его назначение

3. Введение, содержащее ссылки на связанные документы и информацию о том, как лучше всего использовать данное руководство

4. Страницу содержания

5. Главы, описывающие, как использовать, по крайней мере, наиболее важные функции системы

6. Глава, описывающая возможные проблемы и пути их решения

7. Часто задаваемые вопросы и ответы на них

8. Где ещё найти информацию по предмету, контактная информация

9. Глоссарий и, в больших документах, предметный указатель

Все главы и пункты, а также рисунки и таблицы, как правило, нумеруются, с тем, чтобы на них можно было сослаться внутри документа или из другого документа. Нумерация также облегчает ссылки на части руководства, например, при общении пользователя со службой поддержки.

Единая Система Технологической Документации (ЕСТД) — комплексстандартов и руководящих нормативныхдокументов, устанавливающих взаимосвязанные правила и положения по порядку разработки, комплектации, оформлению и обращениютехнологической документации, применяемой при изготовлении и ремонте изделий.

Основные технологические документы содержат различную информацию:

· о комплектующих составных частях изделия и применяемых материалах;

· о действиях, выполняемых исполнителями при проведении технологических процессов и операций;

· о средствах технологического оснащения производства;

· о наладке средств технологического оснащения и применяемых данных по технологическим режимам;

· о расчете трудозатрат, материалов и средств технологического оснащения;

· о технологическом маршруте изготовления и ремонта.

Основные технологические документы используют, как правило, на рабочих местах. Вспомогательные технологические документы разрабатывают с целью улучшения и оптимизации организации работ по технологической подготовке производства. Производные технологические документы применяют для решения задач, связанных с нормированием трудозатрат, выдачей и сдачей материалов, полуфабрикатов и комплектующих изделий.

 

 

8 CALS-технология: основные понятия

CALS-технологии определяют как технологии комплексной компьютеризации сфер промышленного производства, цель которых — унификация и стандартизация спецификаций промышленной продукции на всех этапах ее жизненного цикла. Основные спецификации представлены проектной, технологической, производственной, маркетинговой, эксплуатационной документацией. В CALS-системах предусмотрены хранение, обработка и передача информации в компьютерных средах, оперативный доступ к данным в нужное время и в нужном месте с возможностью их правильной интерпретации.

Главная задача создания и внедрения CALS-технологий — обеспечение единообразного описания и интерпретации данных, независимо от места и времени их получения в общей системе, имеющей масштабы вплоть до глобальных. Структура проектной, технологической и эксплуатационной документации, языки ее представления должны быть стандартизованными. Тогда становится реальной успешная работа над общим проектом разных коллективов, разделенных во времени и пространстве и использующих разные CAE/CAD/CAM-системы. Одна и та же конструкторская документация может быть использована многократно в разных проектах, а одна и та же технологическая документация адаптирована к разным производственным условиям, что позволяет существенно сократить и удешевить общий цикл проектирования и производства. Кроме того, упрощается эксплуатация систем.

Терминология в области CALS еще окончательно не установилась. Так, первоначально аббревиатура CALS расшифровывалась как Computer Aided Logistics Systems, т.е. автоматизированная логистическая поддержка. Поскольку под логистикой обычно понимают дисциплину, посвященную вопросам снабжения и управления запасами, а функции CALS намного шире и связаны со всеми этапами жизненного цикла промышленных изделий, стали применять более соответствующую предмету расшифровку CALS — Continuous Acquisition and Lifecycle Support. В русском языке понятию CALS соответствуют ИПИ (Информационная Поддержка Изделий).

CALS-технологии призваны служить средством, интегрирующим промышленные автоматизированные системы в единую многофункциональную систему. Целью интеграции автоматизированных систем проектирования и управления является повышение эффективности создания и использования сложной техники.

В чем выражается повышение эффективности?

Во-первых, повышается качество изделий за счет более полного учета имеющейся информации при проектировании и принятии управленческих решений. Так, обоснованность решений, принимаемых в автоматизированной системе управления предприятием (АСУП), будет выше, если лицо, принимающее решение и соответствующие программы АСУП имеют оперативный доступ не только к базе данных АСУП, но и к базам данных других автоматизированных систем (САПР, АСТПП и АСУТП) и, следовательно, могут оптимизировать планы работ, содержание заявок, распределение исполнителей, выделение финансов и т.п. При этом под оперативным доступом следует понимать не просто возможность считывания данных из баз данных (БД), но и легкость их правильной интерпретации, т.е. согласованность по синтаксису и семантике с протоколами, принятыми в АСУП. То же относится и к другим системам, например, технологические подсистемы должны с необходимостью воспринимать и правильно интерпретировать данные, поступающие от подсистем автоматизированного конструирования. Последнего не так легко добиться, если основное предприятие и организации-смежники работают с разными автоматизированными системами.

Во-вторых, сокращаются материальные и временные затраты на проектирование и изготовление. Применение CALS позволяет существенно сократить объемы проектных работ, так как описания ранее выполненных удачных разработок компонентов и устройств, многих составных частей оборудования, машин и систем, проектировавшихся ранее, хранятся в базах данных сетевых серверов, доступных любому пользователю технологии CALS. Доступность опять же обеспечивается согласованностью форматов, способов, руководств в разных частях общей интегрированной системы. Кроме того, появляются более широкие возможности для специализации предприятий, вплоть до создания виртуальных предприятий, что также способствует снижению затрат.

В-третьих, существенно снижаются затраты на эксплуатацию, благодаря реализации функций интегрированной логистической поддержки. Существенно облегчается решение проблем ремонтопригодности, интеграции продукции в различного рода системы и среды, адаптации к меняющимся условиям эксплуатации и т.п.

Эти преимущества интеграции данных достигаются применением современных CALS-технологий.

Промышленные автоматизированные системы могут работать автономно, и в настоящее время так обычно и происходит. Однако эффективность автоматизации будет заметно выше, если данные, генерируемые в одной из систем будут доступны в других системах, поскольку принимаемые в них решения станут более обоснованными. Более того, при унификации форматов и семантики данных становится возможным создание виртуальных предприятий, под которыми понимаются объединения юридически независимых предприятий, осуществляющих общие проекты и производства на основе информационного взаимодействия.

Чтобы достичь должного уровня взаимодействия промышленных автоматизированных систем требуется создание единого информационного пространства в рамках как отдельных предприятий, так и, что более важно, в рамках объединения предприятий. Единое информационное пространство обеспечивается благодаря унификации как формы, так и содержания информации о конкретных изделиях на различных этапах их жизненного цикла.

Унификация формы достигается использованием стандартных форматов и языков представления информации в межпрограммных обменах и при документировании.

Унификация содержания, понимаемая как однозначная правильная интерпретация данных о конкретном изделии на всех этапах его жизненного цикла, обеспечивается разработкой онтологий (метаописаний) приложений, закрепляемых в прикладных протоколах CALS.

Унификация перечней и наименований сущностей, атрибутов и отношений в определенных предметных областях является основой для единого электронного описания изделия в CALS-пространстве.

Развитие CALS-технологии стимулирует образование виртуальных производств, при которых процесс создания спецификаций с информацией для программно управляемого технологического оборудования, достаточной для изготовления изделия, может быть распределен во времени и пространстве между многими организационно автономными проектными студиями. Среди несомненных достижений CALS-технологии следует отметить легкость распространения передовых проектных решений, возможность многократного воспроизведения частей проекта в новых разработках и др.

Ожидается, что успех на рынке сложной технической продукции будет немыслим вне технологии CALS.

Проблематика CALS имеет ряд аспектов. По аналогии с аспектами автоматизированного проектирования целесообразно эти аспекты называть видами обеспечения CALS и выделять лингвистическое, информационное, программное, математическое, методическое, техническое и организационное обеспечения CALS.

К лингвистическому обеспечению относятся языки и форматы данных о промышленных изделиях и процессах, используемые для представления и обмена информацией на этапах жизненного цикла изделий.

Информационное обеспечение составляют базы данных, включающие сведения о промышленных изделиях, используемые разными системами в процессе проектирования, производства, эксплуатации и утилизации продукции. В состав информационного обеспечения входят также серии международных и национальных CALS стандартов и спецификаций.

Программное обеспечение CALS представлено программными комплексами, предназначенными для поддержки единого информационного пространства этапов жизненного цикла изделий. Это прежде всего системы управления документами и документооборотом, управления проектными данными (PDM), взаимодействия предприятий в совместном электронном бизнесе (CPC), подготовки интерактивных электронных технических руководств и некоторые другие.

Математическое обеспечение CALS включает методы и алгоритмы создания и использования моделей взаимодействия различных систем в CALS-технологиях. Среди этих методов, в первую очередь, следует назвать методы имитационного моделирования сложных систем, методы планирования процессов и распределения ресурсов.

Методическое обеспечение CALS представлено методиками выполнения таких процессов, как параллельное (совмещенное) проектирование и производство, структурирование сложных объектов, их функциональное и информационное моделирование, объектно-ориентированное проектирование, создание онтологий приложений.

К техническому обеспечению CALS относят аппаратные средства получения, хранения, обработки, визуализации данных при информационном сопровождении изделий. Взаимодействие частей виртуальных предприятий, систем, поддерживающих разные этапы жизненного цикла изделий, происходит через линии передачи данных и сетевое коммутирующее оборудование.

Наконец, организационное обеспечение CALS представлено различного рода документами, совокупностью соглашений и инструкций, регламентирующих роли и обязанности участников жизненного цикла промышленных изделий.

 

 


Поделиться:

Дата добавления: 2015-04-18; просмотров: 78; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты